For all of the problems below, let \(N \) be the set of naturals, \(N = \{0, 1, 2, 3, 4...\} \)

Problem 1: Countability of rationals

Consider the set \(Q \) of rational numbers. Recall the definition: a number \(x \) is rational if there exists natural \(a,b \) such that \(x = a / b \).

a) Find an ONTO mapping \(m \) from \(N \times N \) to \(Q \). Prove that \(m \) is ONTO, using the definition of rational numbers.

b) Use \(m \) together with results we saw in class to prove that \(Q \) is countable. Make sure to explicitly state which results that we showed in class you are using in your proof!

Problem 2: Countability of triples

Let \(T \) be the set of all triples of naturals, \(T = N \times N \times N \). (We saw it before on the last homework).

Show that \(T \) is countable as follows:

a) find a way to list all its members so each member of \(T \) has a finite index in your list.

HINT: in the last homework, we partitioned \(T \) into subsets \(T_0, T_1, T_2, T_3, \ldots \) such that \(T_k \) consists of triples from \(T \) whose members sum up to \(k \):

\[
T_k = \{ (a, b, c) \in T \mid a+b+c = k \}
\]

For example, \(T_2 = \{ (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0) \} \)

b) show that your listing gives a bijection between \(T \) and \(N \), thereby proving that \(T \) is countable

Problem 3. Strings of bits and letters

In class we’ve worked with the set IBS, infinite bit strings. Now consider the set ILS, infinite letter strings. These are infinite strings of letters \(\{a..z\} \) such as “aaaaaaaaa...”, “csecsecse...”, etc.

a) find a 1-1 mapping \(m_I \) from IBS to ILS, show what this mapping will do to the following infinite bit strings

\[
m_I ("10101010101...")
m_I ("11110000000...")
m_I ("00000000000...")
\]

HINT: can we use letters to stand in for bits? Remember, the mapping does NOT need to be onto!
b) find a 1-1 mapping \(m_2 \) from ILS to IBS, show that what this mapping will do to the following infinite letter strings

\[
\begin{align*}
& m_2 (\text{"aaaaaaaaaa"}) \\
& m_2 (\text{"cesecese"})
\end{align*}
\]

HINT: can we represent the letters in binary code?

c) In class, we saw that IBS is uncountable; it has the same cardinality as REALS. Based on (a) and (b), what can you conclude about the cardinality of ILS? Prove your answer.

Problem 4. Multiplying Alephs

Consider the following bijection \(m \) between REALS and INTS \(\times \) 01REALS: given any real \(x \), \(m(x) = (a, b) \) where:

- \(a \in \text{INTS} \) is the part of \(x \) before the decimal point
- \(b \in \text{01REALS} \) is the part after the decimal point

Example: \(m(\pi) = (3, 0.14159...) \); \(m(-17.0) = (-17, 0.00000...) \)

Use \(m \) together with results we saw in class to prove the following equality:

\[
\aleph_0 * \aleph_1 = \aleph_1
\]

Problem 5. Proof by diagonalization

a) In class we saw a proof by diagonalization that there is no bijection between \(\mathbb{N} \) and 01REALS, and concluded that 01REALS are not countable.

Use the same argument to prove by diagonalization that there is no bijection between \(\mathbb{N} \) and ILS, the set of infinite letter strings.

b) In class we saw a proof by diagonalization that there is no bijection between \(\mathbb{N} \) and \(\mathcal{P}(\mathbb{N}) \), and concluded that \(\mathcal{P}(\mathbb{N}) \) is not countable.

Use exactly the same argument to prove by diagonalization that there is no bijection between \(\mathbb{N} \) and \(\mathcal{P}'(\mathbb{N}) \), where \(\mathcal{P}'(\mathbb{N}) \) is a set consisting of all finite sets of naturals:

\[
\mathcal{P}'(\mathbb{N}) = \{ x : x \text{ is a finite subset of } \mathbb{N} \}
\]

Pay close attention to your argument – at some point, it should crash into a logical wall and fail, because \(\mathcal{P}'(\mathbb{N}) \) is actually countable.

Explain carefully where this proof fails and why.