Problem 1: Tertiary cartesian products

As we know, \(S_1 \times S_2 \times S_3 = \{(x_1, x_2, x_3): x_1 \in S_1 \land x_2 \in S_2 \land x_3 \in S_3\} \)

a) Let \(A = \{a, b, c\}, B = \{x, y\}, C = \{0, 1\}. \) Find the following:

1. \(A \times B \times C \)
2. \(C \times B \times A \)
3. \(B \times B \times B \)
4. \(A \times (B \times C) \) Hint: this is the same as \(A \times D \) where \(D = B \times C \)

b) Suppose that for some sets \(A, B, C, \) it is known that \(A \times B \times C = \emptyset. \) What can you conclude from this? *Prove* your conclusion, using definitions.

Problem 2: Cartesian products and truth sets

a) What is the cartesian product \(A \times B, \) where \(A \) is the set of courses offered by the CSE department, and \(B \) is the set of professors at the CSE department? What binary predicate could you define whose truth set is a subset of \(A \times B? \) Use English for your answers...

b) What is the cartesian product \(A \times B \times C \) where \(A \) is the set of all airlines and \(B \) and \(C \) are both the set of all cities in the United States? What 3-argument predicate could you define whose truth set is a subset of \(A \times B \times C? \) Use English for your answers...

Problem 3: Power sets

Find the power set of each of the following sets:

a) \("n"\)

b) \("n", "m", "k"\)

c) \(\emptyset, \{\emptyset\}\)

d) \("n", "m"\) \times \("m", "k"\)
Problem 4: Equivalence Relations

Definition: an equivalence relation as a relation that is reflexive, symmetric, and transitive (i.e. has all three properties). Using the definitions of these properties, show that:

a) the relation HasSameLength over strings is an equivalence relation
b) the relation AtLeastAsLong over strings is not an equivalence relation

Problem 5: Partial Orders

Definition: We say that a relation \(R \) is antisymmetric if, for any elements \(a, b \), it is not the case that both \(a \ R \ b \) and \(b \ R \ a \), unless \(a=b \).

a) Restate the definition above using quantifiers and logic operations.
b) Using definitions, show that AtLeastAsLong is antisymmetric

definition: a partial order is a relation that is reflexive, antisymmetric, and transitive (i.e. has all three properties). Using the definitions of these properties, show that:

c) AtLeastAsLong is a partial order
d) LongerThan is not a partial order
e) SameString is both an equivalence relation and a partial order

Problem 6: Partitions

A partition of a set \(S \) is defined as a subset \(S' \) of \(P(S) \) (power set of \(S \)) such that:

1. The union of all sets in \(S' \) equals \(S \)
2. For any two set in \(S' \), their intersection is empty

Using this definition, show the following:

a) \(\{\{1\}, \{2,3\}, \{4, 5, 6\}\} \) is a partition of \(\{1,2,3,4,5,6\} \)
b) \(\{\{1\}, \{2,3\}, \{4, 5\}\} \) is not a partition of \(\{1,2,3,4,5,6\} \)
c) \(\{\{1,2\}, \{2,3,4\}, \{5,6\}\} \) is not a partition of \(\{1,2,3,4,5,6\} \)

d) Using definitions, show that \(S' \) is a partition of \(S \).