Reading (in textbook, unless stated otherwise):

- Chapter 2.1
- Chapter 2.2 through example 2.2.4

NOTE: please study examples carefully, there are many more of them than we possibly have time for in class

PROPOSITIONAL LOGIC

Proposition – a statement that is true or false

Such as “facts” for proofs – known to be true; conclusions also – you have to show it’s true

Examples:

- 3 is odd
- S1 = …
- S1 ⊆ S2

Propositional Operators – apply to propositions to get new ones

Negation – unary operator, \(! \), \(\sim \)

\(!p \) – new proposition

TRUTH TABLES

of rows = # of combinations of values for all variables (no particular order needed)
of columns = one for each variable, one for each operator

Truth table for negation

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Binary operators – \(\wedge \) conjunction (AND), \(\vee \) disjunction (or), \(\rightarrow \) implication (if-then)
\(a \land b \) – a and b
\(a \lor b \) – a or b
\(a \rightarrow b \) – a implies b, if a then b

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(a \land b)</th>
<th>!a</th>
<th>(a \lor b)</th>
<th>!(a \land b)\</th>
<th>!(a \lor b)\</th>
<th>!a \lor b</th>
<th>!(a \lor b)</th>
<th>!(a \land b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

EQUIVALENCE

Definition: when 2 formulas \(F_1, F_2 \) have the SAME truth values for ALL combinations of input values we say that these formulas are EQUIVALENT, denoted \(F_1 \equiv F_2 \)

Most common equivalences
\(a \rightarrow b \equiv \!a \lor b \)
\(\!(a \land b) \equiv \!a \lor \!b \)
\(\!(a \lor b) \equiv \!a \land \!b \)

Equivalences are very useful; if \(F_1 \equiv F_2 \), can substitute one for another any time
Using in proofs: "it can be easily shown using truth tables that the above proposition is equivalent to ..."

One more operator - XOR - exclusive-or ⋆
\[a \otimes b \equiv (a \lor b) \land (!a \lor !b) \]
"at least one is true, and at least one is false"

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a \otimes b</th>
<th>!a</th>
<th>!b</th>
<th>a \lor b</th>
<th>!a \lor !b</th>
<th>(a \lor b) \land (!a \lor !b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Connection to boolean algebra

FALSE translates to 0, TRUE translates to 1 (or anything besides 0)
\(\land \) translates to MULTIPLY, \(\lor \) translates to ADDITION

Translating English to propositional logic – very important skill

“unless” is connected to implication
unless you give me $1M (G), I kill you (K)
\(!G \rightarrow K \)

“but” means AND
I love you (L) but I think you are fat (F)
\(L \land F \)

“both C and D are liars” = “C is a liar” AND “D is a liar”